【线性代数】6-7:SVD分解(Singular Value Decomposition-SVD)

本文介绍SVD,奇异值分解,应该可以算是本章最后的高潮部分了,也是在机器学习中我们最常用的一种变换,我们经常需要求矩阵的特征值特征向量,比如联合贝叶斯,PCA等常规操作,本文还有两个线性代数的应用,在图像压缩上,以及互联网搜索上。