谭升
非主流人工智能科学家 我和外面那些妖艳的货不一样

【数字图像处理】7.7:灰度图像-图像分割 阈值处理之局部阈值

灰度图像-图像分割 阈值处理之局部阈值

废话开始,今天说下区域阈值(局部阈值),前面介绍的阈值都是全局阈值,也就是阈值根据全局信息产生,而作用对象也是整幅图像的全部像素,而局部阈值的产生是一个中心像素c(x,y)的邻域的一些属性来计算出一个或多个阈值以及阈值的判别式。这句话比较难懂,举个例子,假设c的邻域R,根据邻域R计算出阈值 $T_1,T_2,T_3\dots T_n$ 我们可以表示成向量 $T=(T_1,T_2,T_3\dots T_n)$ ,设计阈值判别式Q(T,pixValue)其中pix_value的值就是像素c(x,y)的灰度值,判别式返回真假,真的话像素设置为亮,否则设置成暗。

算法内容

该算法的关键点在于设计判别式Q和计算阈值向量T,因为此算法的通用性不是很强,但优点是灵活性强,可以根据不同的图片性质来设计不同的执行方案,比如下面例子中使用最简单的两种统计学参数,均值和标准差,当中心像素大于均值的n倍并且大于标准差的m倍。设置窗口大小,也就是邻域大小,参数n,参数m,最后得到较好的阈值结果。

代码实现

算法效果

这里写图片描述
这里写图片描述

总结

相比于全局阈值,局部阈值对目标大小,以及噪声敏感度强,但其缺点是设计针对性强,没有什么通用的算法,而且输入的参数多半需要分析实验产生,不能实现自动阈值处理,其优点是功能强大。
待续。。。

Advertisements
Share

You may also like...

说点什么

avatar
  Subscribe  
提醒

试录了几节线性代数视频课程,欢迎大家支持,
点击试看
点击购买更多内容

由于博客移至wordpress,部分公式和代码显示不正常,博主正在努力修改,如发现公式显示错误,请及时在文章下留言,感谢您的帮助,尽请原谅!