谭升
非主流人工智能科学家 我和外面那些妖艳的货不一样

【数字图像处理】7.3:灰度图像–图像分割 阈值处理之迭代均值阈值

灰度图像–图像分割 阈值处理之迭代均值阈值

废话开始,本来打算昨天写这篇,半路被几个孙子(大学室友)拉去打Dota,结果输了一晚上,暴雪出的魔兽争霸和魔兽世界可谓游戏中的经典,一个是完美的游戏逻辑设计,其次是游戏画面,然后就有了各路模仿者,有感而发–做面向用户的应用程序,在满足软件基本要求的基础上,完美的逻辑设计和优秀的人机交互将能使软件经久不衰。

迭代均值算法

下面开始介绍迭代均值,迭代均值的基本算法如下

  1. 初始化阈值为$T_0$
  2. 用$T_i$将全部像素值分为两部分$G_1$和$G_2$,计算两部分的均值分别为$m_1$和$m_2$
  3. 用$m_1$和$m_2$产生新的阈值 $T_i=\frac{m_1+m_2}{2}$
  4. 迭代上面步骤2和步骤3,直到
    $|T_i-T_{i-1}|<\Delta T$

收敛条件是迭代后阈值变化小于一个收敛控制条件,这个条件决定阈值收敛的精确度,当$\Delta T$设置过大,迭代次数减小,但精确度降低,如果$\Delta T$设置过小,迭代次数增加,准确度提高。
其次是初始化阈值$T_0$的选择,选择的阈值必须左右都有像素,尽量选择靠近中间的像素,这样可以有效的减少迭代次数。在代码中我使用的初始化阈值是,找出像素最大值和最小值,然后计算出他们的平均值。
#代码
此算法比较简单,上代码:

结果与分析

观察运行结果:
未加噪声的图像,仅有两个灰度值:

直方图:


加入1%的高斯噪声:

直方图:


加入3%的高斯噪声:

直方图:


加入5%的高斯噪声:

直方图:


加入7%的高斯噪声:

直方图:


加入9%的高斯噪声:

直方图:


加入11%的高斯噪声:

直方图:


lena图测试结果:

直方图:


baboon图测试结果:

直方图:


结论

迭代均值能够以较小的计算代价得出相对准确的阈值,只需要输入一个控制精度的参数,所以属于相对自动的算法(与p-tile相比),但与前面提到的一样,算法受到目标大小的影响,当目标和背景的面积相对大小相近的时候算法计算效果较好,当目标比背景大很多的时候,算法基本没有效果,背景比目标大很多的时候同样失效(观察直方图面积可以大概观察出目标与背景的比例)。
另一个问题就是噪声影响,观察上面11%的结果,其受到噪声和目标大小的双重影响:

所以效果不理想。
待续。。。

Share

You may also like...

说点什么

avatar
  Subscribe  
提醒

由于博客移至wordpress,部分公式和代码显示不正常,博主正在努力修改,如发现公式显示错误,请及时在文章下留言,感谢您的帮助,尽请原谅!