谭升
非主流人工智能科学家 我和外面那些妖艳的货不一样

【数字图像处理】2.5:图像傅里叶变换(快速傅里叶变换FFT)

图像FFT

上篇已经介绍了关于2D FFT的相关知识,这篇只介绍在图像中的应用,对于一幅图像,做二维FFT后,即可得到其傅里叶变换,傅里叶变换后是二维复数矩阵,因为二维数组,如果是实数,是可以通过变换到0~255通过灰度图像显示出来,而变换结果是复数,所以我们通过显示其幅度,即复数的模,来显示傅里叶谱(幅度谱),不废话,上图:
原图:
SouthEast
FFT结果:
SouthEast 1

可以看出,原图为大名鼎鼎的Lenna图,下面的为FFT后的幅度谱,其主要数值分布在四个顶点附近,图像中的位置坐标表示为(u,v),四个顶点分别表示(0,0),(0,max(v)),(max(u),0),(max(u),max(v)),至于为啥是这四个点,我也没研究明白,但是(0,0)附近是可以解释为低频分量较多,但是我们平时看到matlab的图是在图像中心的,这一步需要经过一个简单的变换,只要将原图中(坐标为表示x,y)x+y为偶数时,f(x,y)变成是其相反数,即-f(x,y),我们称之为Shift;之后可以得到中心化后的幅度谱:
SouthEast 2

此图中图像聚集在图像中心,与Matlab中结果类似,但Matlab中显示的更多,具体原因不清楚,但我感觉是Matlab
对最大值做了处理,因为最大值和最小值之间相差太大,所以拉伸后在变换到0~255,有些结果小于1,无法显示。
中心局部放大:
SouthEast 3

经过傅里叶逆变换后,再把图像Shift回来,即可得到原图,下面再描述一些变换结果:
原图
SouthEast 4
频谱
SouthEast 5
原图
SouthEast 6
频谱
SouthEast 7
原图
SouthEast 8
频谱
SouthEast 9
未中心化的频谱
SouthEast 10

下一篇继续研究傅里叶变换的应用;

Share

You may also like...

说点什么

avatar
  Subscribe  
提醒

试录了几节线性代数视频课程,欢迎大家支持,
点击试看
点击购买更多内容

由于博客移至wordpress,部分公式和代码显示不正常,博主正在努力修改,如发现公式显示错误,请及时在文章下留言,感谢您的帮助,尽请原谅!