【CUDA 基础】4.2 内存管理

【CUDA 基础】4.2 内存管理

CUDA编程的目的是给我们的程序加速,尤其是机器学习,人工智能类的计算,CPU不能高效完成,说白了,我们在控制硬件,控制硬件的语言属于底层语言,比如C语言,最头疼的就是管理内存,python,php这些语言有自己的内存管理机制,

【CUDA 基础】4.0 全局内存

上一章我们整个一章都在研究CUDA的执行模型,必须承认执行模型中,核的配置,决定了程序执行效率,但是程序的执行效率不只由线程束,线程块等执行结构决定,内存也严重的影响了性能。
举个例子,一个老例子,但是这个例子真的非常贴切

【CUDA 基础】3.6 动态并行

【CUDA 基础】3.6 动态并行

动态并行的好处之一就是能让复杂的内核变得有层次,坏处就是写出来的程序更复杂,因为并行行为本来就不好控制,去年我在没有系统的学习CUDA的时候写过一个400行左右的内核,用来训练人脸检测程序,确实比cpu块,但是从gpu的温度来判断,并没有很高的利用率(当时还不会使用性能检测工具这些,当时TensorFlow跑的时候GPU温度有80多,但是我写的就只有60多,所以我断定,gpu性能完全没发挥,但是那个程序还是运行了好久,可见磨刀不误砍柴工这句话是多么正确)

由于博客移至wordpress,部分公式和代码显示不正常,博主正在努力修改,如发现公式显示错误,请及时在文章下留言,感谢您的帮助,尽请原谅!