【数字图像处理】5.6:灰度图像–图像增强 拉普拉斯算子
【数字图像处理】5.6:灰度图像–图像增强 拉普拉斯算子

拉普拉斯算子,二阶微分线性算子,为什么上来就学二阶微分算子,前文说过,与一阶微分相比,二阶微分的边缘定位能力更强,锐化效果更好,所以我们来先学习二阶微分算子,使用二阶微分算子的基本方法是定义一种二阶微分的离散形式,然后根据这个形式生成一个滤波模板,与图像卷积。

【数字图像处理】5.5:灰度图像-图像增强 锐化基础
【数字图像处理】5.5:灰度图像-图像增强 锐化基础

锐化是图像增强的一部分,前面说过了,增强的目的是使观察者看起来更容易识别某些模式,要观察的模式从频率域来分就有低频模式和高频模式,低频模式,也就是之前一直在讲的相对变化缓慢的部分,或者根本没有灰度变化的大片区域,高频部分,就是接下来讲的,图像的细节,细节的定义不知道是什么,但边界,轮廓,一些变化强烈的部分算是细节

【数字图像处理】5.4:灰度图像-图像增强 中值滤波
【数字图像处理】5.4:灰度图像-图像增强 中值滤波

中值滤波时典型的非线性方法,与前面介绍的方法不同,中值滤波更接近于灰度图像的腐蚀和膨胀,是在一定区域内比较大小,找出中值,也就是排序后中间那个数,也就是中学的中位数,平均数用于均值滤波,中位数用于中值滤波,要是专家就可以写本书:统计学在图像处理中的二三事(这句话属于扯淡)。

【数字图像处理】5.3:灰度图像-图像增强 双边滤波 Bilateral Filtering
【数字图像处理】5.3:灰度图像-图像增强 双边滤波 Bilateral Filtering

图像增强,平滑第二天,虽然说是第二天,但要学习和研究包括写程序,都不是一天完成的。上一篇写的是线性滤波模板,此类模板我们可以叫他们静态模板,因为其只依赖于我们的选择,我们一旦选择完成,模板就唯一确定,不会在卷积的过程中产生变换,所以这类模板具有线性性质,但缺点是不灵活,不能根据不同灰度变化情况来实时的调整权重

【数字图像处理】5.1:灰度图像-图像增强 综合介绍
【数字图像处理】5.1:灰度图像-图像增强 综合介绍

接下来几天的任务是图像增强,图像增强并没有严格数学上的定义,也就是没有说明处理后达到什么样的指标后算是完成,同样,增强是针对人的,如果你觉得处理后观察结果更显然了,那就是达到了增强的目的,增强分好多方法,大方向可以分为,灰度拉伸和空间滤波,灰度拉伸是简单的像素灰度到像素灰度的变换

【数字图像处理】5.0:灰度图像-空域滤波 基础:卷积和相关
【数字图像处理】5.0:灰度图像-空域滤波 基础:卷积和相关

滤波的概念其实是频域概念,即对信号频率进行处理,高于或低于截止频率的将被干掉,或者带通带限,就有了高通滤波器,低通滤波器。频域的相乘对应于时域的卷积,于是,空域滤波器(空间滤波器也叫卷积核,空间掩膜,核,模板,窗口等)和图像的卷积能达到和频域相同或相近的效果,所以我们要说先图像空域的卷积,值得注意的是空间滤波器只有线性滤波器和频域对应有关联,非线性滤波器在频域无法实现。

【数字图像处理】4.10:灰度图像-频域滤波 概论
【数字图像处理】4.10:灰度图像-频域滤波 概论

对于空域滤波和时域滤波,其最重要的理论基础就是,频率域的高频部分对应于空域中变化陡峭的细节,而频域的低频部分对应于空域变化换面的平坦区域,为了得到平滑或陡峭的部分,我们就想到了频域滤波,在空域中对细节和非细节的提取和定义并没有频域那么直接与明确,通过频域这个实验室,可以得出很多针对不同问题